Supplementary
Practice 1
Grade: 10A

MATHEMATICS

I) Complete by $\in, \notin, \subset, \not \subset$.

1) $6.3 \ldots \mathbb{Q}$
2) $-4^{2} \ldots \cdot \mathbb{N}^{*} \cap \mathbb{Z}$
3) $\{3 \pi\} \ldots, \mathbb{R}$
4) $(-5 ; 8) \ldots . \mathbb{N} \times \mathbb{Z}$
II) Let $A=\{1 ; 3 ; 4 ; 5\}$ and $B=\{2 ; 5\}$.
5) Write $\mathcal{P}(B)$ in extension.
6) Copy and complete: $\operatorname{Card}(\mathcal{P}(A))=\ldots \cdots=\cdots$
7) Write $A \cap B$ and $A \cup B$ in extension.
8) Let $E=\{1 ; 2 ; 3 ; 4 ; 5 ; 6\}$ be the reference set.
a) Write E in comprehension.
b) Determine each of the following sets in extension:

$$
\overline{\mathrm{A}} ; \overline{\mathrm{A}} \cap \mathrm{~B} ; \overline{\mathrm{B}} \cup \mathrm{~B} ; \quad \mathrm{A} \cap \mathrm{~B} \cap \mathrm{E} ; \overline{\mathrm{A} \cup \mathrm{~B}}
$$

5) Copy and complete by filling the blanks using: \in; $\notin \subset ; \not \subset ;=$.
$\phi \ldots B ; \quad \phi \ldots \mathcal{P}(B) ;\{\phi\} \ldots \mathcal{P}(A) ;\{3 ; 4\} \ldots A ; B \cap B \ldots B \cup B ; A \cap B \ldots A \cup B$
6) Determine whether the following is true or false:

$$
\operatorname{Card}(A)+\operatorname{Card}(B)-\operatorname{Card}(A \cap B)=\operatorname{Card}(A \cup B)
$$

III) 1) A represents the set of prime numbers that are less than 15 .
$\mathrm{B}=\{x \mid x$ is odd and $3 \leq x<11\}$
$\mathrm{C}=\{4 ; 6 ; 7 ; 9 ; 11 ; 13\}$.
$\mathrm{E}=\{x \mid x \in \mathbb{N}$ and $1<x \leq 13\}$ is the reference set.
a) Write sets A, B and E in extension.
b) Complete the Venn diagram shown below:

c) Determine \bar{A}, the complement of A in E.
2) The 120 grade 12 students are distributed as follows:

58 applied to LU (Lebanese University).
15 applied to LAU (Lebanese American University).
52 applied to AUB (American University of Beirut).
8 applied to LU and AUB.
7 applied to LAU and AUB.
3 applied to all three universities.
a) Represent the above data in a Venn diagram.
b) How many students did not apply to any of the three universities?
c) How many students applied to AUB or LAU?
d) How many students applied to LU only?
IV) The questions are independent.

1) Calculate: $|\sqrt{5}-4|-|2(6-9)|+\left|2^{-1}+\sqrt{5}\right|$
2) State whether the interval $[-3 ; 5$ [is included in the interval]-4;5]. Justify your answer.
3) Write in the form of an interval, if possible.

$$
]-\infty ; 9[\cap]-1 ; 11]
$$

4) Calculate the center, amplitude and radius of the interval $[-4 ; 2]$.
5) Write the intersection as an interval: $[-4 ; 2] \cap]-3 ; 5[$.
6) Write the union as an interval: $]-\infty ; 3] \cup] 3 ;+\infty[$.
7) Determine the set in extension: $]-8 ; 2] \cap \mathbb{N}^{*}$.
8) Fill in the blank: $]-\infty ; 4] \cup] 4 ; 6[\cup] 6 ;+\infty[=\mathbb{R}-\{\ldots\}$.
9) Compare: $|4-x|$ and $4+|x|$.
V) Express without absolute value. Represent your answer in a table.
10) $A=|3-x|$
11) $B=2 x+|3 x+5|$
VI) Solve in \mathbb{R} and graph the solution on a graduated axis.
12) $3+|4-3 x|<10$
13) $\left|\frac{x}{3}\right| \leq 2$
14) $5-|x|=-3+|x|$
15) $1+3|x|<7$
16) $\frac{|x|}{2} \geq 1$
17) $-|x-2| \leq-3$
18) $|2-x|=|x-2|$
19) $|2 x|+4>5-|2 x|$
VII) Determine whether each of the following is true or false.
20) $-|5-2 x|=-5+2 x$
21) If $x^{2}+9=0$, then $x=-3$ or $x=3$
22) $|x|=-x$ is possible.
23) $\left|4 x^{2}+1\right|=4 x^{2}+1$
VIII) Determine the domain of definition for each expression.
24) $\frac{\sqrt{|x|+2}}{|x|-2}$
25) $\sqrt{4-6 x}+\frac{3|x|}{|4+x|-3}$
26) $\frac{5}{\sqrt{5+3 x}}$
IX) Which of the following are impossible? Which are true for all real numbers?
27) $|x+2| \leq-2$
28) $|3-4 x| \geq-3$
29) $|x|+5=0$
30) $x^{2}+1>0$
31) $|-5-x|+4 x^{2}<-1$
32) $\frac{|7 x|+1}{3 x^{2}+1}=0$
