

Supplementary Practice 1 October 2019 N°_____

MATHEMATICS

I) Complete by \in , \notin , \subset , $\not\subset$.

$$(2)$$
 -4^2 $\mathbb{N}^* \cap \mathbb{Z}$

$$3)$$
 $\{3\pi\}$ \mathbb{R}

4)
$$(-5; 8) \dots \mathbb{N} \times \mathbb{Z}$$

II) Let $A = \{1, 3, 4, 5\}$ and $B = \{2, 5\}$.

1) Write
$$\mathcal{P}(B)$$
 in extension.

- 2) Copy and complete: $Card(\mathcal{P}(A)) = \dots = \dots$
- 3) Write $A \cap B$ and $A \cup B$ in extension.
- 4) Let $E = \{1, 2, 3, 4, 5, 6\}$ be the *reference* set.
 - a) Write *E* in comprehension.
 - b) Determine each of the following sets in extension:

$$\overline{A}$$
; $\overline{A} \cap B$; $\overline{B} \cup B$; $A \cap B \cap E$; $\overline{A \cup B}$

5) Copy and complete by filling the blanks using: \in ; \notin ; \subset ; \notin ; =.

$$\phi ... B$$
; $\phi ... \mathcal{P}(B)$; $\{\phi\} ... \mathcal{P}(A)$; $\{3; 4\} ... A$; $B \cap B ... B \cup B$; $A \cap B ... A \cup B$

6) Determine whether the following is true or false:

$$Card(A) + Card(B) - Card(A \cap B) = Card(A \cup B)$$

III) 1) A represents the set of prime numbers that are less than 15.

 $B = \{x \mid x \text{ is odd and } 3 \le x < 11\}$

 $C = \{4; 6; 7; 9; 11; 13\}.$

 $E = \{x \mid x \in \mathbb{N} \text{ and } 1 < x \le 13\}$ is the reference set.

- a) Write sets A, B and E in extension.
- b) Complete the Venn diagram shown below:

c) Determine \overline{A} , the complement of A in E.

- 2) The 120 grade 12 students are distributed as follows:
 - 58 applied to LU (Lebanese University).
 - 15 applied to LAU (Lebanese American University).
 - 52 applied to AUB (American University of Beirut).
 - 8 applied to LU and AUB.
 - 7 applied to LAU and AUB.
 - 3 applied to all three universities.
 - a) Represent the above data in a Venn diagram.
 - b) How many students did **not** apply to any of the three universities?
 - c) How many students applied to AUB or LAU?
 - d) How many students applied to LU only?
- **IV**) *The questions are independent.*
 - 1) Calculate: $|\sqrt{5} 4| |2(6 9)| + |2^{-1} + \sqrt{5}|$
 - 2) State whether the interval [-3; 5[is included in the interval]-4; 5[. Justify your answer.
 - 3) Write in the form of an interval, if possible.

$$]-\infty; 9[\cap]-1; 11]$$

- 4) Calculate the center, amplitude and radius of the interval [-4; 2].
- 5) Write the intersection as an interval: $[-4; 2] \cap]-3; 5[$.
- 6) Write the union as an interval: $]-\infty; 3] \cup]3; +\infty[$.
- 7) Determine the set in extension: $]-8; 2] \cap \mathbb{N}^*$.
- 8) Fill in the blank: $]-\infty$; 4] \cup]4; 6[\cup]6; $+\infty$ [= $\mathbb{R} \{...\}$.
- 9) Compare: |4 x| and 4 + |x|.
- **V)** Express without absolute value. Represent your answer in a table.
 - 1) A = |3 x|
 - 2) B = 2x + |3x + 5|
- **VI)** Solve in \mathbb{R} and graph the solution on a graduated axis.

$$1) \ 3 + |4 - 3x| < 10$$

$$2) \quad \left| \frac{x}{3} \right| \le 2$$

1)
$$3 + |4 - 3x| < 10$$
 2) $\left| \frac{x}{3} \right| \le 2$ 3) $5 - |x| = -3 + |x|$ 4) $1 + 3|x| < 7$

4)
$$1 + 3|x| < 7$$

$$5)\frac{|x|}{2} \ge 1$$

$$6) - |x - 2| \le -3$$

7)
$$|2 - x| = |x - 2|$$

6)
$$-|x-2| \le -3$$
 7) $|2-x| = |x-2|$ 8) $|2x| + 4 > 5 - |2x|$

VII) Determine whether each of the following is true or false.

$$1) - |5 - 2x| = -5 + 2x$$

1)
$$-|5 - 2x| = -5 + 2x$$

2) If $x^2 + 9 = 0$, then $x = -3$ or $x = 3$
3) $|x| = -x$ is possible.
4) $|4x^2 + 1| = 4x^2 + 1$

3)
$$|x| = -x$$
 is possible.

4)
$$|4x^2 + 1| = 4x^2 + 1$$

VIII) Determine the domain of definition for each expression.

$$1)\frac{\sqrt{|x|+2}}{|x|-2}$$

1)
$$\frac{\sqrt{|x|+2}}{|x|-2}$$
 2) $\sqrt{4-6x} + \frac{3|x|}{|4+x|-3}$

$$3)\frac{5}{\sqrt{5+3x}}$$

IX) Which of the following are impossible? Which are true for all real numbers?

1)
$$|x + 2| \le -2$$

$$2) |3 - 4x| \ge -3$$

3)
$$|x| + 5 = 0$$

4)
$$x^2 + 1 > 0$$

1)
$$|x + 2| \le -2$$
 2) $|3 - 4x| \ge -3$
5) $|-5 - x| + 4x^2 < -1$ 6) $\frac{|7x| + 1}{3x^2 + 1} = 0$

$$6) \frac{|7x|+1}{3x^2+1} = 0$$