

Supplementary Practice 1 October 2019 N°_____

MATHEMATICS

I) Answer by true or false and justify by solving.

1)
$$3^{2} + 4^{2} = 7^{2}$$

2) $\frac{2^{6} \times 7^{6}}{14^{6}} = 1$
3) $(3^{3})^{7} > 9^{11}$
4) $(3 + 3^{-1}) \div 3^{-1} = 10$
5) $3^{4} \times 9^{3} \times (-27)^{2} = -3^{16}$
6) If $\frac{a}{b} = 4$, then $\frac{a^{2}}{b^{2}} = 8$
7) $5^{62} \times 0.2^{62} \times 5 = 5$
8) $4^{55} \times 0.25^{53} = 8$
9) $(-98)^{4} \times (-23) \times (-54)^{5}$ is a negative number.
10) If $a \times b = -1$, then $a^{5} \times 3 \times b^{3}$ is positive.
11) $10^{3} = 10,000$
12) $10^{-3} = 0.0001$
13) $2^{-3} = 0.002$
14) $-2^{4} = 16$

II) Copy and complete:

1) $16^2 = 2^{-..}$ 2) $25^{-3} = 5^{-..}$ 3) $12^4 \times 3^4 = 6^{-..}$ 4) $4^2 \times 8^3 \times 2^{-..} = 2^{16}$

III) Simplify each expression. Represent the final answer as a product of prime bases raised to integer exponents.

$$1)\frac{2^{5}\times3^{5}\times5^{6}}{2^{7}\times3^{5}\times5^{5}} \qquad 2)\frac{12^{3}\times(-4)^{2}}{(-18)^{3}\times2^{7}} \qquad 3)\frac{6^{3}\times(0.3)^{5}}{(-0.04)^{2}\times90} \qquad 4)\frac{3\times5^{-2}}{4^{-1}\times12}$$

IV) Determine the perimeter and area of each figure:

V) 1) The area of a square is $9^8 \ cm^2$. What is the length of one side of this square?

2) The area of a rectangle is 24cm². Calculate the missing dimension in each of the following cases:

- a) Length = 12 cm; width = ?
- b) Length = 8cm; width = ?
- c) Width = 2cm; length = ?
- d) Width = 4cm; length = ?
- 3) The area of a rectangle is $10^7 cm^2$. If its length is $10^5 cm$, calculate its width.
- 4) The area of a rectangle is the same as that of the square in part 1 of this exercise.

If the width of the rectangle is 3^6 *cm*, calculate its length.

VI) Write each of the fo	llowing numbers in scienti	fic notation:	
1) 45,000	2) 0.0004389	3) $4^2 \times 10^3$	4) $12^4 \times 10^{-2}$
5) 4 × 10,000 + 3 × 1,000 + 5 × 100 + 8 × 10 + 7 × 1			6) $6 \times 10^2 - 44$

VII) Calculate each of the following:

1)
$$\left(\frac{3}{4}\right)^5 \times \left(\frac{4}{3}\right)^7$$

2) $\left(\frac{10}{11}\right)^3 \div \left(\frac{10}{22}\right)^4$
3) $\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2$
4) $\left(\frac{4}{5}\right)^{-1} - 1.25$
5) $\frac{4}{4^{-2}} \div (-64)$
6) $(0.3)^2 + (0.4)^2$

VIII) Compare each of the following: (Use the symbols <, > or = to fill in the blanks.)

1)
$$\left(\frac{1}{2}\right)^2 \dots \left(\frac{1}{2}\right)^3$$
 2) $(0.3)^3 \dots (0.3)^2$ 3) $5 \times 10^{-4} \dots 5 \times 10^{-2}$

3) 0.62×10^3

IX) Insert between two consecutive powers of ten: 1) 34,908 2) 0.000717

- **X**) 1) Write in decimal form: $\frac{3}{r}$
 - 2) Deduce the scientific notation of $\frac{3}{5}$. 3) Deduce the scientific notation of: $\frac{3 \times 10^7}{5 \times 10^5}$
- **XI**) 1) Is $\frac{3\times4}{5\times6}$ the same as $\frac{3}{5} \times \frac{4}{6}$? Why? 3) Is $\frac{3\times4}{5+6}$ the same as $\frac{3}{5} \times \frac{4}{6}$? Why? 4) Is $\frac{3\times4}{5\times6}$ the same as $\frac{3}{6} \times \frac{4}{5}$? Why? 4) Is $\frac{3\times4}{5\times6}$ the same as $\frac{3}{6} \times \frac{4}{5}$? Why?
- **XII**) 1) a)Determine the prime decomposition of 24 and 36.

b) Use the prime decomposition to calculate the GCF and LCM of 24 and 36.

- c) Use the GCF to simplify the fraction: $\frac{24}{36}$
- d) Use the LCM in order to calculate the following sum: $\frac{5}{36} + \frac{7}{24}$ e) If a = 24, b = 36, d = GCF(24; 36) and m = LCM(24; 36), check the rule: $a \times b = d \times m$.
- 2) The GCF of two natural numbers is 5 and their LCM is 60. If one of these numbers is 20, calculate the other. (Use the rule in part "e" above.)
- 3) What do we call two numbers whose GCF is equal to 1?
- 4) Determine the GCF and LCM in each of the following **special** cases: a) a = 12 and b = 4b) a = 15 and b = 16c) a = 15 and b = 28

----- END OF PRACTICE 1 -----