

III) 1) Evaluate: M = a²/3 - 4/3; a = √3 - 1. Present the final answer in the form b√3, where b ∈ Q.
2) Evaluate: N = [√2(2√5 + 1)]². Present the final answer in the form a + b√5, where a and b are natural numbers.

IV) 1) a) Compare 7 and $5\sqrt{2}$ by squaring.

- b) Deduce the simplified form of: $\sqrt{(7-5\sqrt{2})^2}$.
- 2) a) Expand and reduce: $(4\sqrt{2}-6)^2$.
 - b) Deduce the simplified form of: $\sqrt{68 48\sqrt{2}}$.
 - c) One side of a square measures: $(6 4\sqrt{2})$ cm. What is the area of this square?

V) Write in the form $a + b\sqrt{3}$:

1)
$$(2 - \sqrt{27})(4 + \sqrt{3})$$
 2) $\frac{1 - \sqrt{3}}{4\sqrt{3}}$ 3) $\frac{2 - \sqrt{3}}{\sqrt{3} + 1}$

VI) 1) Factorize: a) $4x^2 - 10$ b) $4x^2 - 4x\sqrt{3} + 3$

- 2) The area of a rectangle is: $(25 6x^2)cm^2$. Determine the dimensions of this rectangle as algebraic expressions.
- 3) The area of a square is: $(1 + 6x + 9x^2)cm^2$. Determine the length of one side of this square as an algebraic expression.

VII) 1) Solve for "x": a)
$$(3x + \sqrt{3})^2 = 9$$
 b) $2 - (x\sqrt{2} + 1)^2 = 0$

- 2) One side of an equilateral triangle measures $4x\sqrt{3}$ cm. Find the perimeter and area of this triangle as algebraic expressions.
- 3) ABCD is a trapezoid having bases [AD] and [BC]. [AM] and [DN] are two heights of this trapezoid. BM=3cm; AM=4cm; BC=10cm; NC=1cm

 a) Calculate AB.
 b) Calculate AB.
 b) Calculate MN.
 c) Calculate DC.
 d) Calculate the perimeter of ABCD.

- 4) MNPQ is a rhombus of center O such that MP=16 cm and NQ=12cm.
 - a) Calculate the length of one side of this rhombus
 - b) Calculate the area of this rhombus.
- VIII) 1) ABCD is a rhombus such that A and C are fixed. How do B and D vary? (What is the geometric locus of B and D?)
 - 2) ABCD is a rectangle such that B and D are fixed. How do A and C vary? (What is the geometric locus of A and C?)
 - 3) ABC is a triangle such that [BC] is fixed. The height relative to [BC] is AH=6cm. a) What is the geometric locus of A?

b) M is a point on [AB] and N is a point on [AC] such that $MN = \frac{BC}{2}$. What is the geometric locus of points M and N?

IX) 1) Determine whether each of the following numbers is rational or irrational:

a)
$$\sqrt{12}(3\sqrt{2})(\sqrt{8})$$
 b) $-\pi\sqrt{4} + 2\pi$ c) $1.\overline{52} + \frac{2}{99}$

2) Determine whether each of the following is true or false:

- a) If $x^2 = y^2$, then x = y. b) If a - b = 0, then a = bc) If x < y, then $x^2 < y^2$ d) $\sqrt{(m-n)^2} = m - n$
- 3) If $A^2 = 4 + 2\sqrt{3}$; $B^2 = 4 2\sqrt{3}$ and $A \times B = -2$, deduce $(A B)^2$ and $(A + B)^2$.

----- END OF PRACTICE 1 -----