\qquad
\qquad
I) Calculate each of the following: 1) $2 . \overline{32}-\frac{5}{99}$
2) $(2 . \overline{6}+1 . \overline{3})^{2}$
3) $0 . \overline{32} \div \frac{16}{11}$
II) Find the value of \mathbf{x} in each figure: Exact, then to the nearest 10^{-2} :
1)

3)

4)

5) Rectangle

6) Square $\quad(O C=x)$

III) 1) Evaluate: $M=\frac{a^{2}}{3}-\frac{4}{3} ; a=\sqrt{3}-1$. Present the final answer in the form $b \sqrt{3}$, where $b \in \mathbb{Q}$.
2) Evaluate: $N=[\sqrt{2}(2 \sqrt{5}+1)]^{2}$. Present the final answer in the form $a+b \sqrt{5}$, where a and b are natural numbers.
IV) 1) a) Compare 7 and $5 \sqrt{2}$ by squaring.
b) Deduce the simplified form of: $\sqrt{(7-5 \sqrt{2})^{2}}$.
2) a) Expand and reduce: $(4 \sqrt{2}-6)^{2}$.
b) Deduce the simplified form of: $\sqrt{68-48 \sqrt{2}}$.
c) One side of a square measures: $(6-4 \sqrt{2}) \mathrm{cm}$. What is the area of this square?
V) Write in the form $a+b \sqrt{3}$:

1) $(2-\sqrt{27})(4+\sqrt{3})$
2) $\frac{1-\sqrt{3}}{4 \sqrt{3}}$
3) $\frac{2-\sqrt{3}}{\sqrt{3}+1}$
VI) 1) Factorize: a) $4 x^{2}-10 \quad$ b) $4 x^{2}-4 x \sqrt{3}+3$
4) The area of a rectangle is: $\left(25-6 x^{2}\right) \mathrm{cm}^{2}$.

Determine the dimensions of this rectangle as algebraic expressions.
3) The area of a square is: $\left(1+6 x+9 x^{2}\right) \mathrm{cm}^{2}$.

Determine the length of one side of this square as an algebraic expression.
VII) 1) Solve for " x ":
a) $(3 x+\sqrt{3})^{2}=9$
b) $2-(x \sqrt{2}+1)^{2}=0$
2) One side of an equilateral triangle measures $4 x \sqrt{3} \mathrm{~cm}$.

Find the perimeter and area of this triangle as algebraic expressions.
3) $A B C D$ is a trapezoid having bases $[A D]$ and $[B C]$. [AM] and [DN] are two heights of this trapezoid. $\mathrm{BM}=3 \mathrm{~cm} ; \mathrm{AM}=4 \mathrm{~cm} ; \mathrm{BC}=10 \mathrm{~cm} ; \mathrm{NC}=1 \mathrm{~cm}$
a) Calculate $A B$.
b) Calculate MN.
c) Calculate DC.
d) Calculate the perimeter of ABCD .
e) Calculate the area of ABCD.

4) MNPQ is a rhombus of center O such that $\mathrm{MP}=16 \mathrm{~cm}$ and $\mathrm{NQ}=12 \mathrm{~cm}$.
a) Calculate the length of one side of this rhombus
b) Calculate the area of this rhombus.
VIII) 1) ABCD is a rhombus such that A and C are fixed.

How do B and D vary? (What is the geometric locus of B and D ?)
2) $A B C D$ is a rectangle such that B and D are fixed.

How do A and C vary? (What is the geometric locus of A and C ?)
3) $A B C$ is a triangle such that $[B C]$ is fixed. The height relative to $[B C]$ is $A H=6 \mathrm{~cm}$.
a) What is the geometric locus of A ?
b) M is a point on $[A B]$ and N is a point on $[A C]$ such that $M N=\frac{B C}{2}$.

What is the geometric locus of points M and N ?
IX) 1) Determine whether each of the following numbers is rational or irrational:
a) $\sqrt{12}(3 \sqrt{2})(\sqrt{8})$
b) $-\pi \sqrt{4}+2 \pi$
c) $1 . \overline{52}+\frac{2}{99}$
2) Determine whether each of the following is true or false:
a) If $x^{2}=y^{2}$, then $x=y$.
b) If $a-b=0$, then $a=b$
c) If $x<y$, then $x^{2}<y^{2}$
d) $\sqrt{(m-n)^{2}}=m-n$
3) If $A^{2}=4+2 \sqrt{3} ; B^{2}=4-2 \sqrt{3}$ and $A \times B=-2$, deduce $(A-B)^{2}$ and $(A+B)^{2}$.

